Ternary Homogeneous Nucleation of H2SO4, NH3, and H2O Under Conditions Relevant to the Lower Troposphere

نویسندگان

  • D. R. Benson
  • J. H. Yu
  • A. Markovich
  • Shan-Hu Lee
چکیده

Ternary homogeneous nucleation (THN) of H2SO4, NH3 and H2O has been used to explain new particle formation in various atmospheric regions, yet laboratory measurements of THN have failed to reproduce atmospheric observations. Here, we report first laboratory observations of THN made under conditions relevant to the lower troposphere ([H2SO4] of 106–107 cm−3, [NH3] of 0.08–20 ppbv, and a temperature of 288 K). Our observations show that NH3 can enhance atmospheric H2SO4 aerosol nucleation and the enhancement factor (EF) in nucleation rate (J ) due to NH3 (the ratio of J measured with vs. without NH3) increases linearly with increasing [NH3] and increases with decreasing [H2SO4] and RH. Two chemical ionization mass spectrometers (CIMS) are used to measure [H2SO4] and [NH3], as well as possible impurities of amines in the nucleation system. Aerosol number concentrations are measured with a water condensation counter (CPC, TSI 3786). The slopes of Log J vs. Log [H2SO4], Log J vs. Log RH, and Log J vs. Log [NH3] are 3–5, 1–4, and 1, respectively. These slopes and the threshold of [H2SO4] required for the unity nucleation vary only fractionally in the presence and absence of NH3. These observations can be used to improve aerosol nucleation models to assess how man-made SO2 and NH3 affect aerosol formation and CCN production at the global scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Trimethylamine on Atmospheric Nucleation Involving H2SO4

Field observations and quantum chemical calculations have shown that organic amine compounds may be important for new particle formation involving H2SO4. Here, we report laboratory observations that investigate the effect of trimethylamine (TMA) on H2SO4-H2O nucleation made under aerosol precursor concentrations typically found in the lower troposphere ([H2SO4] of 106−107 cm−3; [TMA] of 180–135...

متن کامل

Effect of ammonia on new particle formation: A kinetic H2SO4-H2O- NH3 nucleation model constrained by laboratory measurements

[1] A clear understanding of the nucleation mechanisms is important to understand the lifecycle of atmospheric particles and to provide reliable predictions of climate change associated with aerosols. On the basis of the classical ternary homogeneous nucleation (THN) theory developed in recent years, the presence of ppt level NH3 concentration significantly enhances nucleation rates. Here we co...

متن کامل

Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms

[1] Particle number concentration in the troposphere is an important parameter controlling the climate and health impacts of atmospheric aerosols. We show that nucleation rates and total particle number concentrations in the troposphere, predicted by different nucleation schemes, differ significantly. Our extensive comparisons of simulated results with land‐, ship‐, and aircraft‐based measureme...

متن کامل

Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4–H2O) and ternary (H2SO4–H2O–NH3) system

Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary (H2SO4–H2O) system and the ternary system involving ammonia (H2SO4–H2O–NH3)may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation ove...

متن کامل

New particle formation in the remote troposphere : A comparison of observations at various sites

Measurements show that new particles are formed by homogenous nucleation over a wide range of conditions in the remote troposphere. In our studies, large nucleation events are found exclusively in regions of enhanced sulfuric acid vapor (H2SO4g) concentrations, with maximum concentrations never exceeding 5x107 molecules cm '3. Although these data suggest that H2SO4g participated, comparisons be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016